vhr-cloudmask package
vhr_cloudmask.model.config.cloudmask_config
Classes:
|
- class vhr_cloudmask.model.config.cloudmask_config.CloudMaskConfig(data_dir, model_dir, model, inference_save_dir='results', experiment_name='unet-cnn', experiment_type='landcover', seed=24, gpu_devices='0, 1, 2, 3', mixed_precision=True, xla=False, input_bands=<factory>, output_bands=<factory>, modify_labels=None, substract_labels=False, expand_dims=True, tile_size=256, include_classes=False, augment=True, center_crop=False, no_data=0, nodata_fractional=False, nodata_fractional_tolerance=0.75, json_tiles_dir=None, dataset_from_json=False, normalize=1.0, normalize_label=1.0, rescale=None, standardization=None, batch_size=32, n_classes=1, test_size=0.2, mean=<factory>, std=<factory>, loss='tf.keras.losses.CategoricalCrossentropy', optimizer='tf.keras.optimizers.Adam', metrics=<factory>, callbacks=<factory>, transfer_learning=None, transfer_learning_weights=None, transfer_learning_fine_tune_at=None, learning_rate=0.0001, max_epochs=6000, patience=7, model_filename=None, inference_regex='*.tif', inference_regex_list=<factory>, window_size=8120, inference_overlap=0.5, inference_treshold=0.5, inference_pad_value=1000, window_algorithm='triang', pred_batch_size=128, probability_map=False, prediction_dtype='uint8', prediction_nodata=255, prediction_compress='LZW', prediction_driver='GTiff', metadata_regex=None, validation_database=None, test_classes=<factory>, test_colors=<factory>, test_truth_regex=None, hf_repo_id='nasa-cisto-data-science-group/vhr-cloudmask', hf_model_filename='cloudmask-vietnam-senegal-46-0.04.hdf5')[source]
Bases:
Config
Attributes:
- callbacks: List[str]
- data_dir: str
- hf_model_filename: str = 'cloudmask-vietnam-senegal-46-0.04.hdf5'
- hf_repo_id: str = 'nasa-cisto-data-science-group/vhr-cloudmask'
- inference_regex_list: Optional[List[str]]
- input_bands: List[str]
- mean: List[float]
- metrics: List[str]
- model: str
- model_dir: Optional[str]
- output_bands: List[str]
- std: List[float]
- test_classes: List[str]
- test_colors: Optional[List[str]]
vhr_cloudmask.model.pipelines.cloudmask_cnn_pipeline
Classes:
|
This is a conceptual class representation of a CNN Segmentation TensorFlow pipeline. |
- class vhr_cloudmask.model.pipelines.cloudmask_cnn_pipeline.CloudMaskPipeline(config_filename=None, data_csv=None, model_filename=None, output_dir=None, inference_regex_list=None, default_config='templates/cloudmask_default.yaml', logger=None)[source]
Bases:
CNNSegmentation
This is a conceptual class representation of a CNN Segmentation TensorFlow pipeline. It is essentially an extended combination of the
tensorflow_caney.model.pipelines.cnn_segmentation.CNNSegmentation
.- Parameters:
logger (str) – A logger device
conf (omegaconf.OmegeConf object) – Configuration device
data_csv (str) – CSV filename with data files for training
experiment_name (str) – Experiment name description
images_dir (str) – Directory to store training images
labels_dir (str) – Directory to store training labels
model_dir (str) – Directory to store trained models
Methods:
predict
()This will perform inference on a list of GeoTIFF files provided as a list of regexes from the CLI.
vhr_cloudmask.view.cloudmask_cnn_pipeline_cli
Functions:
|